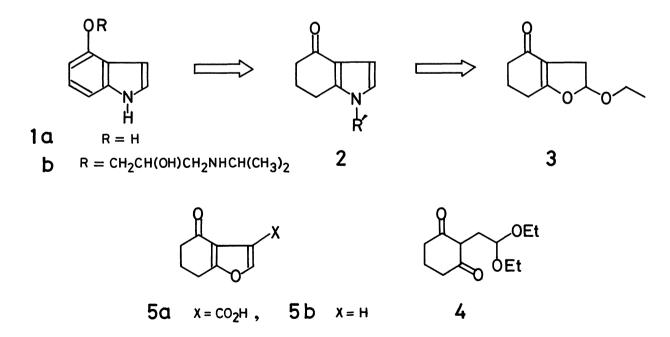
A FACILE SYNTHESIS OF 4-HYDROXYINDOLE VIA ELECTROCHEMICAL OXIDATIVE C-C COUPLING


Sigeru TORII, Kenji UNEYAMA, Takashi ONISHI, Yoshiji FUJITA,
Michihiro ISHIGURO, and Takashi NISHIDA

Department of Industrial Chemistry, School of Engineering, Okayama University,
Okayama 700

4-Hydroxyindole ($\underline{1a}$), a useful intermediate for Pindolol ($\underline{1b}$), has been prepared \underline{via} electrooxidative coupling of 1,3-cyclohexadione with ethyl vinyl ether followed by ammonolysis and dehydrogenation.

Synthesis of 4-hydroxyindole (\underline{la}), a useful intermediate for Pindolol(\underline{lb})¹⁾ (an arrhythmic agent), has been received much attention. Since usual reactions of indole give 5-substituted products rather than 4-substituted ones, either construction of pyrrole ring from 2-alkyl-3-nitrophenol derivatives²⁾ or aromatization of 4,5,6,7-tetrahydro-4-oxoindole (2) has been employed.

However, the latter approach involves inefficient condensation of 1,3-cyclohexadione with aminoacetoaldehyde diethylacetal³⁾ and oxoiminoglyoxal.⁴⁾ Thus, Stetter selected the transformation of <u>5a</u> into a pyrrole derivative in which the 3-carboxy group is necessary for activating the furan ring in ammonolysis.⁵⁾ In this communication we describe a straightforward synthetic route of <u>1a</u> involving an electrochemical one-step preparation of <u>3</u>, which would be much more reactive toward amine than 5 because of its nonaromaticity.

A solution of 1,3-cyclohexadione (5 mmol), sodium ethoxide (2.5 mmol), ethyl vinyl ether (100 mmol) in 40 ml of anhydrous EtOH was electrolyzed at room temperature using Pt foils (4x3 cm²) under constant current (14 mA/cm²) for 80 min (1.5 F/mol). The usual workup gave $\underline{3}$ and $\underline{4}$ ($\underline{3}:\underline{4}$ = 51:49) in 65% yield (83% based on recovered $\underline{6}$). The compound $\underline{3}$ was a major product after a long reaction time, since $\underline{4}$ was gradually converted into $\underline{3}$ in the reaction condition. Sodium or potassium hydroxide in EtOH was effective to the conversion, but triethyl amine was useless.

A tentative reaction mechanism is shown in the following scheme. The carbanion $\underline{6}$ can be electrochemically oxidized at a low electrode potential generating the corresponding radical $\underline{7}$, $\underline{6}$) which adds to the electron rich C=C of ethyl vinyl ether $\underline{7}$) followed by one-electron oxidation to give $\underline{8}$. The carbonium ion $\underline{8}$ undergoes either an intramolecular ($\underline{8} \rightarrow \underline{3}$) or an intermolecular ($\underline{8} \rightarrow \underline{4}$) nucleophilic reaction.

Both $\underline{3}$ and $\underline{4}$ can be transformed into $\underline{2}$ more efficiently by the action of $(\mathrm{NH}_4)_2\mathrm{CO}_3$ in MeOH than that of dry NH_3 in MeOH. Thus, a solution of $\underline{3}$ and $\underline{4}$ ($\underline{3}:\underline{4}=88:12$) (0.53 mmol) and (NH_4) CO_3 (0.58 mmol) in MeOH (1 ml) was heated in a glass tube at 150 °C for 40 h, affording $\underline{2}$ (R'= H) in 80% yield. Likewise, reactions of $\underline{3}$ and $\underline{4}$ with propyl, butyl, and benzyl amines gave $\underline{2}$ [R'= Pr(60%), Bu (62%), and Bz(56%)], respectively. Finally, $\underline{2}$ (R'= H) was dehydrogenated by Pd/C in refluxing p-cymene affording $\underline{1}\underline{a}$ in 69% yield (73% based on recovered 2).8)

References and Notes

- 1) K. Saemeli, Helv. Physiol. Acta, <u>25</u>, 221 (1967).
- 2) A. Stoll, F. Troxler, J. Peyer, and A. Hoffmann, Helv. Chim. Acta, <u>38</u>, 1463 (1955).
- J. M. Bobbitt, C. L. Kulkarni, C. P. Dutta, H. Kofod, and K. Ngchiong,
 J. Org. Chem., 43, 3541 (1978).
- 4) K. Schoen, Tokkyo Koho, 44-9904 (1969).
- 5) (a) H. Stetter and R. Lauterbach, Ann. Chem., <u>655</u>, 20 (1962); (b) H. Stetter and E. Siehnhold, Chem. Ber., <u>88</u>, 271 (1955).
- (a) H. G. Thomas, M. Streukens, and R. Peek, Tetrahedron Lett., 45 (1978); (b)
 T. Chiba, M. Okimoto, H. Nagai, and Y. Takata, J. Org. Chem., 44, 3519 (1979).
- 7) The controlled potential electrolysis of both methyl malonate and methyl aceto-acetate in the presence of ethyl vinyl ether afforded the correponding C-C coupling products in 36-37% yields. H. Schafer and A. Alazrak, Angew. Chem. internat. Edit., 7, 474 (1968).
- 8) $\underline{3}$: PMR (CDCl₃) δ 5.74 (dd, 1, J=7.1, 3.7 Hz, CHO), 3.87-4.15 (m, 2, CH₂O), 1.90-3.10 (m, 8, CH₂), 1.26 (t, J=7.1 Hz, CH₃); IR, 1640 (C=O) cm⁻¹; MS, m/e 182 (M⁺), 98 (base peak).